跳到主要内容
跳到主要内容

Lakekeeper 目录

Experimental feature. Learn more.
备注

与 Lakekeeper 目录的集成仅适用于 Iceberg 表。此集成支持 AWS S3 和其他云存储提供商。

ClickHouse 支持与多个目录(Unity、Glue、REST、Polaris 等)的集成。本指南将引导您使用 ClickHouse 查询数据,并使用 Lakekeeper 目录。

Lakekeeper 是一个开源的 Apache Iceberg REST 目录实现,提供:

  • Rust 原生 实现,具有高性能和可靠性
  • REST API 符合 Iceberg REST 目录规范
  • 云存储 与兼容 S3 的存储集成
备注

由于此功能是实验性的,您需要使用以下命令启用它: SET allow_experimental_database_iceberg = 1;

本地开发设置

对于本地开发和测试,您可以使用容器化的 Lakekeeper 设置。此方法非常适合学习、原型设计和开发环境。

先决条件

  1. Docker 和 Docker Compose:确保已安装并运行 Docker
  2. 示例设置:您可以使用 Lakekeeper docker-compose 设置

设置本地 Lakekeeper 目录

您可以使用官方的 Lakekeeper docker-compose 设置,该设置提供了一个完整的环境,包括 Lakekeeper、PostgreSQL 元数据后端和 MinIO 对象存储。

步骤 1: 创建一个新文件夹以运行示例,然后创建一个文件 docker-compose.yml,配置如下:

version: '3.8'

services:
  lakekeeper:
    image: quay.io/lakekeeper/catalog:latest
    environment:
      - LAKEKEEPER__PG_ENCRYPTION_KEY=This-is-NOT-Secure!
      - LAKEKEEPER__PG_DATABASE_URL_READ=postgresql://postgres:postgres@db:5432/postgres
      - LAKEKEEPER__PG_DATABASE_URL_WRITE=postgresql://postgres:postgres@db:5432/postgres
      - RUST_LOG=info
    command: ["serve"]
    healthcheck:
      test: ["CMD", "/home/nonroot/lakekeeper", "healthcheck"]
      interval: 1s
      timeout: 10s
      retries: 10
      start_period: 30s
    depends_on:
      migrate:
        condition: service_completed_successfully
      db:
        condition: service_healthy
      minio:
        condition: service_healthy
    ports:
      - 8181:8181
    networks:
      - iceberg_net

  migrate:
    image: quay.io/lakekeeper/catalog:latest-main
    environment:
      - LAKEKEEPER__PG_ENCRYPTION_KEY=This-is-NOT-Secure!
      - LAKEKEEPER__PG_DATABASE_URL_READ=postgresql://postgres:postgres@db:5432/postgres
      - LAKEKEEPER__PG_DATABASE_URL_WRITE=postgresql://postgres:postgres@db:5432/postgres
      - RUST_LOG=info
    restart: "no"
    command: ["migrate"]
    depends_on:
      db:
        condition: service_healthy
    networks:
      - iceberg_net

  bootstrap:
    image: curlimages/curl
    depends_on:
      lakekeeper:
        condition: service_healthy
    restart: "no"
    command:
      - -w
      - "%{http_code}"
      - "-X"
      - "POST"
      - "-v"
      - "http://lakekeeper:8181/management/v1/bootstrap"
      - "-H"
      - "Content-Type: application/json"
      - "--data"
      - '{"accept-terms-of-use": true}'
      - "-o"
      - "/dev/null"
    networks:
      - iceberg_net

  initialwarehouse:
    image: curlimages/curl
    depends_on:
      lakekeeper:
        condition: service_healthy
      bootstrap:
        condition: service_completed_successfully
    restart: "no"
    command:
      - -w
      - "%{http_code}"
      - "-X"
      - "POST"
      - "-v"
      - "http://lakekeeper:8181/management/v1/warehouse"
      - "-H"
      - "Content-Type: application/json"
      - "--data"
      - '{"warehouse-name": "demo", "project-id": "00000000-0000-0000-0000-000000000000", "storage-profile": {"type": "s3", "bucket": "warehouse-rest", "key-prefix": "", "assume-role-arn": null, "endpoint": "http://minio:9000", "region": "local-01", "path-style-access": true, "flavor": "minio", "sts-enabled": true}, "storage-credential": {"type": "s3", "credential-type": "access-key", "aws-access-key-id": "minio", "aws-secret-access-key": "ClickHouse_Minio_P@ssw0rd"}}'
      - "-o"
      - "/dev/null"
    networks:
      - iceberg_net

  db:
    image: bitnami/postgresql:16.3.0
    environment:
      - POSTGRESQL_USERNAME=postgres
      - POSTGRESQL_PASSWORD=postgres
      - POSTGRESQL_DATABASE=postgres
    healthcheck:
      test: ["CMD-SHELL", "pg_isready -U postgres -p 5432 -d postgres"]
      interval: 2s
      timeout: 10s
      retries: 5
      start_period: 10s
    volumes:
      - postgres_data:/bitnami/postgresql
    networks:
      - iceberg_net

  minio:
    image: bitnami/minio:2025.4.22
    environment:
      - MINIO_ROOT_USER=minio
      - MINIO_ROOT_PASSWORD=ClickHouse_Minio_P@ssw0rd
      - MINIO_API_PORT_NUMBER=9000
      - MINIO_CONSOLE_PORT_NUMBER=9001
      - MINIO_SCHEME=http
      - MINIO_DEFAULT_BUCKETS=warehouse-rest
    networks: 
      iceberg_net:
        aliases:
          - warehouse-rest.minio
    ports:
      - "9002:9000"
      - "9003:9001"
    healthcheck:
      test: ["CMD", "mc", "ls", "local", "|", "grep", "warehouse-rest"]
      interval: 2s
      timeout: 10s
      retries: 3
      start_period: 15s
    volumes:
      - minio_data:/bitnami/minio/data

  clickhouse:
    image: clickhouse/clickhouse-server:head
    container_name: lakekeeper-clickhouse
    user: '0:0'  # Ensures root permissions
    ports:
      - "8123:8123"
      - "9000:9000"
    volumes:
      - clickhouse_data:/var/lib/clickhouse
      - ./clickhouse/data_import:/var/lib/clickhouse/data_import  # Mount dataset folder
    networks:
      - iceberg_net
    environment:
      - CLICKHOUSE_DB=default
      - CLICKHOUSE_USER=default
      - CLICKHOUSE_DO_NOT_CHOWN=1
      - CLICKHOUSE_PASSWORD=
    depends_on:
      lakekeeper:
        condition: service_healthy
      minio:
        condition: service_healthy

volumes:
  postgres_data:
  minio_data:
  clickhouse_data:

networks:
  iceberg_net:
    driver: bridge

步骤 2: 运行以下命令以启动服务:

docker compose up -d

步骤 3: 等待所有服务就绪。您可以检查日志:

docker-compose logs -f
备注

Lakekeeper 设置要求首先将示例数据加载到 Iceberg 表中。在通过 ClickHouse 查询它们之前,请确保环境已创建并填充了表。表的可用性取决于特定的 docker-compose 设置和示例数据加载脚本。

连接到本地 Lakekeeper 目录

连接到您的 ClickHouse 容器:

docker exec -it lakekeeper-clickhouse clickhouse-client

然后创建与 Lakekeeper 目录的数据库连接:

SET allow_experimental_database_iceberg = 1;

CREATE DATABASE demo
ENGINE = DataLakeCatalog('http://lakekeeper:8181/catalog', 'minio', 'ClickHouse_Minio_P@ssw0rd')
SETTINGS catalog_type = 'rest', storage_endpoint = 'http://minio:9002/warehouse-rest', warehouse = 'demo'

使用 ClickHouse 查询 Lakekeeper 目录表

现在连接已建立,您可以开始通过 Lakekeeper 目录进行查询。例如:

USE demo;

SHOW TABLES;

如果您的设置包含示例数据(例如出租车数据集),您应该看到类似的表:

┌─name──────────┐
│ default.taxis │
└───────────────┘
备注

如果您没有看到任何表,通常意味着:

  1. 环境尚未创建示例表
  2. Lakekeeper 目录服务未完全初始化
  3. 示例数据加载过程尚未完成

您可以检查 Spark 日志以查看表创建进度:

docker-compose logs spark

要查询一个表(如果可用):

SELECT count(*) FROM `default.taxis`;
┌─count()─┐
│ 2171187 │
└─────────┘
反引号要求

反引号是必需的,因为 ClickHouse 不支持多个命名空间。

要检查表的 DDL:

SHOW CREATE TABLE `default.taxis`;
┌─statement─────────────────────────────────────────────────────────────────────────────────────┐
│ CREATE TABLE demo.`default.taxis`                                                             │
│ (                                                                                             │
│     `VendorID` Nullable(Int64),                                                               │
│     `tpep_pickup_datetime` Nullable(DateTime64(6)),                                           │
│     `tpep_dropoff_datetime` Nullable(DateTime64(6)),                                          │
│     `passenger_count` Nullable(Float64),                                                      │
│     `trip_distance` Nullable(Float64),                                                        │
│     `RatecodeID` Nullable(Float64),                                                           │
│     `store_and_fwd_flag` Nullable(String),                                                    │
│     `PULocationID` Nullable(Int64),                                                           │
│     `DOLocationID` Nullable(Int64),                                                           │
│     `payment_type` Nullable(Int64),                                                           │
│     `fare_amount` Nullable(Float64),                                                          │
│     `extra` Nullable(Float64),                                                                │
│     `mta_tax` Nullable(Float64),                                                              │
│     `tip_amount` Nullable(Float64),                                                           │
│     `tolls_amount` Nullable(Float64),                                                         │
│     `improvement_surcharge` Nullable(Float64),                                                │
│     `total_amount` Nullable(Float64),                                                         │
│     `congestion_surcharge` Nullable(Float64),                                                 │
│     `airport_fee` Nullable(Float64)                                                           │
│ )                                                                                             │
│ ENGINE = Iceberg('http://minio:9002/warehouse-rest/warehouse/default/taxis/', 'minio', '[HIDDEN]') │
└───────────────────────────────────────────────────────────────────────────────────────────────┘

将数据从您的数据湖加载到 ClickHouse

如果您需要将数据从 Lakekeeper 目录加载到 ClickHouse,请首先创建一个本地 ClickHouse 表:

CREATE TABLE taxis
(
    `VendorID` Int64,
    `tpep_pickup_datetime` DateTime64(6),
    `tpep_dropoff_datetime` DateTime64(6),
    `passenger_count` Float64,
    `trip_distance` Float64,
    `RatecodeID` Float64,
    `store_and_fwd_flag` String,
    `PULocationID` Int64,
    `DOLocationID` Int64,
    `payment_type` Int64,
    `fare_amount` Float64,
    `extra` Float64,
    `mta_tax` Float64,
    `tip_amount` Float64,
    `tolls_amount` Float64,
    `improvement_surcharge` Float64,
    `total_amount` Float64,
    `congestion_surcharge` Float64,
    `airport_fee` Float64
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(tpep_pickup_datetime)
ORDER BY (VendorID, tpep_pickup_datetime, PULocationID, DOLocationID);

然后通过 INSERT INTO SELECT 从您的 Lakekeeper 目录表加载数据:

INSERT INTO taxis 
SELECT * FROM demo.`default.taxis`;