- Use case guides
- Data lake
- Lakekeeper 目录
Lakekeeper 目录
与 Lakekeeper 目录的集成仅适用于 Iceberg 表。此集成支持 AWS S3 和其他云存储提供商。
ClickHouse 支持与多个目录(Unity、Glue、REST、Polaris 等)的集成。本指南将引导您使用 ClickHouse 查询数据,并使用 Lakekeeper 目录。
Lakekeeper 是一个开源的 Apache Iceberg REST 目录实现,提供:
- Rust 原生 实现,具有高性能和可靠性
- REST API 符合 Iceberg REST 目录规范
- 云存储 与兼容 S3 的存储集成
由于此功能是实验性的,您需要使用以下命令启用它:
SET allow_experimental_database_iceberg = 1;
本地开发设置
对于本地开发和测试,您可以使用容器化的 Lakekeeper 设置。此方法非常适合学习、原型设计和开发环境。
先决条件
- Docker 和 Docker Compose:确保已安装并运行 Docker
- 示例设置:您可以使用 Lakekeeper docker-compose 设置
设置本地 Lakekeeper 目录
您可以使用官方的 Lakekeeper docker-compose 设置,该设置提供了一个完整的环境,包括 Lakekeeper、PostgreSQL 元数据后端和 MinIO 对象存储。
步骤 1: 创建一个新文件夹以运行示例,然后创建一个文件 docker-compose.yml,配置如下:
version: '3.8'
services:
lakekeeper:
image: quay.io/lakekeeper/catalog:latest
environment:
- LAKEKEEPER__PG_ENCRYPTION_KEY=This-is-NOT-Secure!
- LAKEKEEPER__PG_DATABASE_URL_READ=postgresql://postgres:postgres@db:5432/postgres
- LAKEKEEPER__PG_DATABASE_URL_WRITE=postgresql://postgres:postgres@db:5432/postgres
- RUST_LOG=info
command: ["serve"]
healthcheck:
test: ["CMD", "/home/nonroot/lakekeeper", "healthcheck"]
interval: 1s
timeout: 10s
retries: 10
start_period: 30s
depends_on:
migrate:
condition: service_completed_successfully
db:
condition: service_healthy
minio:
condition: service_healthy
ports:
- 8181:8181
networks:
- iceberg_net
migrate:
image: quay.io/lakekeeper/catalog:latest-main
environment:
- LAKEKEEPER__PG_ENCRYPTION_KEY=This-is-NOT-Secure!
- LAKEKEEPER__PG_DATABASE_URL_READ=postgresql://postgres:postgres@db:5432/postgres
- LAKEKEEPER__PG_DATABASE_URL_WRITE=postgresql://postgres:postgres@db:5432/postgres
- RUST_LOG=info
restart: "no"
command: ["migrate"]
depends_on:
db:
condition: service_healthy
networks:
- iceberg_net
bootstrap:
image: curlimages/curl
depends_on:
lakekeeper:
condition: service_healthy
restart: "no"
command:
- -w
- "%{http_code}"
- "-X"
- "POST"
- "-v"
- "http://lakekeeper:8181/management/v1/bootstrap"
- "-H"
- "Content-Type: application/json"
- "--data"
- '{"accept-terms-of-use": true}'
- "-o"
- "/dev/null"
networks:
- iceberg_net
initialwarehouse:
image: curlimages/curl
depends_on:
lakekeeper:
condition: service_healthy
bootstrap:
condition: service_completed_successfully
restart: "no"
command:
- -w
- "%{http_code}"
- "-X"
- "POST"
- "-v"
- "http://lakekeeper:8181/management/v1/warehouse"
- "-H"
- "Content-Type: application/json"
- "--data"
- '{"warehouse-name": "demo", "project-id": "00000000-0000-0000-0000-000000000000", "storage-profile": {"type": "s3", "bucket": "warehouse-rest", "key-prefix": "", "assume-role-arn": null, "endpoint": "http://minio:9000", "region": "local-01", "path-style-access": true, "flavor": "minio", "sts-enabled": true}, "storage-credential": {"type": "s3", "credential-type": "access-key", "aws-access-key-id": "minio", "aws-secret-access-key": "ClickHouse_Minio_P@ssw0rd"}}'
- "-o"
- "/dev/null"
networks:
- iceberg_net
db:
image: bitnami/postgresql:16.3.0
environment:
- POSTGRESQL_USERNAME=postgres
- POSTGRESQL_PASSWORD=postgres
- POSTGRESQL_DATABASE=postgres
healthcheck:
test: ["CMD-SHELL", "pg_isready -U postgres -p 5432 -d postgres"]
interval: 2s
timeout: 10s
retries: 5
start_period: 10s
volumes:
- postgres_data:/bitnami/postgresql
networks:
- iceberg_net
minio:
image: bitnami/minio:2025.4.22
environment:
- MINIO_ROOT_USER=minio
- MINIO_ROOT_PASSWORD=ClickHouse_Minio_P@ssw0rd
- MINIO_API_PORT_NUMBER=9000
- MINIO_CONSOLE_PORT_NUMBER=9001
- MINIO_SCHEME=http
- MINIO_DEFAULT_BUCKETS=warehouse-rest
networks:
iceberg_net:
aliases:
- warehouse-rest.minio
ports:
- "9002:9000"
- "9003:9001"
healthcheck:
test: ["CMD", "mc", "ls", "local", "|", "grep", "warehouse-rest"]
interval: 2s
timeout: 10s
retries: 3
start_period: 15s
volumes:
- minio_data:/bitnami/minio/data
clickhouse:
image: clickhouse/clickhouse-server:head
container_name: lakekeeper-clickhouse
user: '0:0' # Ensures root permissions
ports:
- "8123:8123"
- "9000:9000"
volumes:
- clickhouse_data:/var/lib/clickhouse
- ./clickhouse/data_import:/var/lib/clickhouse/data_import # Mount dataset folder
networks:
- iceberg_net
environment:
- CLICKHOUSE_DB=default
- CLICKHOUSE_USER=default
- CLICKHOUSE_DO_NOT_CHOWN=1
- CLICKHOUSE_PASSWORD=
depends_on:
lakekeeper:
condition: service_healthy
minio:
condition: service_healthy
volumes:
postgres_data:
minio_data:
clickhouse_data:
networks:
iceberg_net:
driver: bridge
步骤 2: 运行以下命令以启动服务:
docker compose up -d
步骤 3: 等待所有服务就绪。您可以检查日志:
docker-compose logs -f
Lakekeeper 设置要求首先将示例数据加载到 Iceberg 表中。在通过 ClickHouse 查询它们之前,请确保环境已创建并填充了表。表的可用性取决于特定的 docker-compose 设置和示例数据加载脚本。
连接到本地 Lakekeeper 目录
连接到您的 ClickHouse 容器:
docker exec -it lakekeeper-clickhouse clickhouse-client
然后创建与 Lakekeeper 目录的数据库连接:
SET allow_experimental_database_iceberg = 1;
CREATE DATABASE demo
ENGINE = DataLakeCatalog('http://lakekeeper:8181/catalog', 'minio', 'ClickHouse_Minio_P@ssw0rd')
SETTINGS catalog_type = 'rest', storage_endpoint = 'http://minio:9002/warehouse-rest', warehouse = 'demo'
使用 ClickHouse 查询 Lakekeeper 目录表
现在连接已建立,您可以开始通过 Lakekeeper 目录进行查询。例如:
USE demo;
SHOW TABLES;
如果您的设置包含示例数据(例如出租车数据集),您应该看到类似的表:
┌─name──────────┐
│ default.taxis │
└───────────────┘
如果您没有看到任何表,通常意味着:
- 环境尚未创建示例表
- Lakekeeper 目录服务未完全初始化
- 示例数据加载过程尚未完成
您可以检查 Spark 日志以查看表创建进度:
docker-compose logs spark
要查询一个表(如果可用):
SELECT count(*) FROM `default.taxis`;
┌─count()─┐
│ 2171187 │
└─────────┘
反引号是必需的,因为 ClickHouse 不支持多个命名空间。
要检查表的 DDL:
SHOW CREATE TABLE `default.taxis`;
┌─statement─────────────────────────────────────────────────────────────────────────────────────┐
│ CREATE TABLE demo.`default.taxis` │
│ ( │
│ `VendorID` Nullable(Int64), │
│ `tpep_pickup_datetime` Nullable(DateTime64(6)), │
│ `tpep_dropoff_datetime` Nullable(DateTime64(6)), │
│ `passenger_count` Nullable(Float64), │
│ `trip_distance` Nullable(Float64), │
│ `RatecodeID` Nullable(Float64), │
│ `store_and_fwd_flag` Nullable(String), │
│ `PULocationID` Nullable(Int64), │
│ `DOLocationID` Nullable(Int64), │
│ `payment_type` Nullable(Int64), │
│ `fare_amount` Nullable(Float64), │
│ `extra` Nullable(Float64), │
│ `mta_tax` Nullable(Float64), │
│ `tip_amount` Nullable(Float64), │
│ `tolls_amount` Nullable(Float64), │
│ `improvement_surcharge` Nullable(Float64), │
│ `total_amount` Nullable(Float64), │
│ `congestion_surcharge` Nullable(Float64), │
│ `airport_fee` Nullable(Float64) │
│ ) │
│ ENGINE = Iceberg('http://minio:9002/warehouse-rest/warehouse/default/taxis/', 'minio', '[HIDDEN]') │
└───────────────────────────────────────────────────────────────────────────────────────────────┘
将数据从您的数据湖加载到 ClickHouse
如果您需要将数据从 Lakekeeper 目录加载到 ClickHouse,请首先创建一个本地 ClickHouse 表:
CREATE TABLE taxis
(
`VendorID` Int64,
`tpep_pickup_datetime` DateTime64(6),
`tpep_dropoff_datetime` DateTime64(6),
`passenger_count` Float64,
`trip_distance` Float64,
`RatecodeID` Float64,
`store_and_fwd_flag` String,
`PULocationID` Int64,
`DOLocationID` Int64,
`payment_type` Int64,
`fare_amount` Float64,
`extra` Float64,
`mta_tax` Float64,
`tip_amount` Float64,
`tolls_amount` Float64,
`improvement_surcharge` Float64,
`total_amount` Float64,
`congestion_surcharge` Float64,
`airport_fee` Float64
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(tpep_pickup_datetime)
ORDER BY (VendorID, tpep_pickup_datetime, PULocationID, DOLocationID);
然后通过 INSERT INTO SELECT 从您的 Lakekeeper 目录表加载数据:
INSERT INTO taxis
SELECT * FROM demo.`default.taxis`;