跳到主要内容
跳到主要内容

重写 PostgreSQL 查询

这是将 PostgreSQL 迁移到 ClickHouse 的指南的 第二部分。通过一个实际的示例,它演示了如何使用实时复制 (CDC) 方法高效地完成迁移。许多涵盖的概念也适用于从 PostgreSQL 到 ClickHouse 的手动批量数据传输。

您的 PostgreSQL 设置中的大多数 SQL 查询在 ClickHouse 中应该可以无修改地运行,并且执行速度更快。

使用 CDC 进行去重

在使用 CDC 进行实时复制时,请注意,更新和删除可能导致重复行。为了解决这个问题,您可以使用涉及视图和可刷新的物化视图的技术。

请参考本 指南,了解如何在使用实时复制和 CDC 进行迁移时,将您的应用程序从 PostgreSQL 迁移到 ClickHouse,降低摩擦。

在 ClickHouse 中优化查询

虽然可以在最小查询重写的情况下进行迁移,但建议利用 ClickHouse 的特性显著简化查询并进一步改善查询性能。

这里的示例涵盖了常见的查询模式,并展示了如何在 ClickHouse 中优化它们。它们使用完整的 Stack Overflow 数据集(截至 2024 年 4 月)在 PostgreSQL 和 ClickHouse 中的等效资源(8 核心,32GiB 内存)。

为了简单起见,下面的查询省略了使用数据去重的技术。

此处的计数会略有不同,因为 PostgreSQL 数据仅包含满足外键引用完整性的行。ClickHouse 不强加这样的约束,因此拥有完整的数据集,例如,包括匿名用户。

用户(提问超过 10 个)中获得最多浏览量的用户:

-- ClickHouse
SELECT OwnerDisplayName, sum(ViewCount) AS total_views
FROM stackoverflow.posts
WHERE (PostTypeId = 'Question') AND (OwnerDisplayName != '')
GROUP BY OwnerDisplayName
HAVING count() > 10
ORDER BY total_views DESC
LIMIT 5

┌─OwnerDisplayName────────┬─total_views─┐
│ Joan Venge            │       25520387 │
│ Ray Vega              │       21576470 │
│ anon                  │       19814224 │
│ Tim                   │       19028260 │
│ John                  │       17638812 │
└─────────────────────────┴─────────────┘

5 rows in set. Elapsed: 0.360 sec. Processed 24.37 million rows, 140.45 MB (67.73 million rows/s., 390.38 MB/s.)
Peak memory usage: 510.71 MiB.
--Postgres
SELECT OwnerDisplayName, SUM(ViewCount) AS total_views
FROM public.posts
WHERE (PostTypeId = 1) AND (OwnerDisplayName != '')
GROUP BY OwnerDisplayName
HAVING COUNT(*) > 10
ORDER BY total_views DESC
LIMIT 5;

        ownerdisplayname        | total_views
-------------------------+-------------
 Joan Venge             |       25520387
 Ray Vega               |       21576470
 Tim                    |       18283579
 J. Pablo Fernández |      12446818
 Matt                   |       12298764

Time: 107620.508 ms (01:47.621)

哪些 tags 收到的 views 最多:

--ClickHouse
SELECT arrayJoin(arrayFilter(t -> (t != ''), splitByChar('|', Tags))) AS tags,
        sum(ViewCount) AS views
FROM posts
GROUP BY tags
ORDER BY views DESC
LIMIT 5

┌─tags───────┬──────views─┐
│ javascript │ 8190916894 │
│ python        │ 8175132834 │
│ java          │ 7258379211 │
│ c#            │ 5476932513 │
│ android       │ 4258320338 │
└────────────┴────────────┘

5 rows in set. Elapsed: 0.908 sec. Processed 59.82 million rows, 1.45 GB (65.87 million rows/s., 1.59 GB/s.)
--Postgres
WITH tags_exploded AS (
        SELECT
        unnest(string_to_array(Tags, '|')) AS tag,
        ViewCount
        FROM public.posts
),
filtered_tags AS (
        SELECT
        tag,
        ViewCount
        FROM tags_exploded
        WHERE tag <> ''
)
SELECT tag AS tags,
        SUM(ViewCount) AS views
FROM filtered_tags
GROUP BY tag
ORDER BY views DESC
LIMIT 5;

        tags    |   views
------------+------------
 javascript | 7974880378
 python         | 7972340763
 java           | 7064073461
 c#             | 5308656277
 android        | 4186216900
(5 rows)

Time: 112508.083 ms (01:52.508)

聚合函数

在可能的情况下,用户应利用 ClickHouse 的聚合函数。下面我们展示了使用 argMax 函数来计算每年最受欢迎的问题。

--ClickHouse
SELECT  toYear(CreationDate) AS Year,
        argMax(Title, ViewCount) AS MostViewedQuestionTitle,
        max(ViewCount) AS MaxViewCount
FROM stackoverflow.posts
WHERE PostTypeId = 'Question'
GROUP BY Year
ORDER BY Year ASC
FORMAT Vertical
Row 1:
──────
Year:                   2008
MostViewedQuestionTitle: How to find the index for a given item in a list?
MaxViewCount:           6316987

Row 2:
──────
Year:                   2009
MostViewedQuestionTitle: How do I undo the most recent local commits in Git?
MaxViewCount:           13962748

...

Row 16:
───────
Year:                   2023
MostViewedQuestionTitle: How do I solve "error: externally-managed-environment" every time I use pip 3?
MaxViewCount:           506822

Row 17:
───────
Year:                   2024
MostViewedQuestionTitle: Warning "Third-party cookie will be blocked. Learn more in the Issues tab"
MaxViewCount:           66975

17 rows in set. Elapsed: 0.677 sec. Processed 24.37 million rows, 1.86 GB (36.01 million rows/s., 2.75 GB/s.)
Peak memory usage: 554.31 MiB.

这比等效的 PostgreSQL 查询显著更简单(且更快):

--Postgres
WITH yearly_views AS (
        SELECT
        EXTRACT(YEAR FROM CreationDate) AS Year,
        Title,
        ViewCount,
        ROW_NUMBER() OVER (PARTITION BY EXTRACT(YEAR FROM CreationDate) ORDER BY ViewCount DESC) AS rn
        FROM public.posts
        WHERE PostTypeId = 1
)
SELECT
        Year,
        Title AS MostViewedQuestionTitle,
        ViewCount AS MaxViewCount
FROM yearly_views
WHERE rn = 1
ORDER BY Year;
 year |                                                 mostviewedquestiontitle                                                 | maxviewcount
------+-----------------------------------------------------------------------------------------------------------------------+--------------
 2008 | How to find the index for a given item in a list?                                                                       |       6316987
 2009 | How do I undo the most recent local commits in Git?                                                                     |       13962748

...

 2023 | How do I solve "error: externally-managed-environment" every time I use pip 3?                                          |       506822
 2024 | Warning "Third-party cookie will be blocked. Learn more in the Issues tab"                                              |       66975
(17 rows)

Time: 125822.015 ms (02:05.822)

条件和数组

条件和数组函数使查询简单得多。以下查询计算了 2022 年到 2023 年之间出现超过 10000 次的标签,其百分比增长最大。请注意,以下的 ClickHouse 查询因条件、数组函数以及在 HAVING 和 SELECT 子句中重用别名的能力而变得简明扼要。

--ClickHouse
SELECT  arrayJoin(arrayFilter(t -> (t != ''), splitByChar('|', Tags))) AS tag,
        countIf(toYear(CreationDate) = 2023) AS count_2023,
        countIf(toYear(CreationDate) = 2022) AS count_2022,
        ((count_2023 - count_2022) / count_2022) * 100 AS percent_change
FROM stackoverflow.posts
WHERE toYear(CreationDate) IN (2022, 2023)
GROUP BY tag
HAVING (count_2022 > 10000) AND (count_2023 > 10000)
ORDER BY percent_change DESC
LIMIT 5

┌─tag─────────┬─count_2023─┬─count_2022─┬──────percent_change─┐
│ next.js       │       13788 │         10520 │   31.06463878326996 │
│ spring-boot │         16573 │         17721 │  -6.478189718413183 │
│ .net          │       11458 │         12968 │ -11.644046884639112 │
│ azure         │       11996 │         14049 │ -14.613139725247349 │
│ docker        │       13885 │         16877 │  -17.72826924216389 │
└─────────────┴────────────┴────────────┴─────────────────────┘

5 rows in set. Elapsed: 0.247 sec. Processed 5.08 million rows, 155.73 MB (20.58 million rows/s., 630.61 MB/s.)
Peak memory usage: 403.04 MiB.
--Postgres
SELECT
        tag,
        SUM(CASE WHEN year = 2023 THEN count ELSE 0 END) AS count_2023,
        SUM(CASE WHEN year = 2022 THEN count ELSE 0 END) AS count_2022,
        ((SUM(CASE WHEN year = 2023 THEN count ELSE 0 END) - SUM(CASE WHEN year = 2022 THEN count ELSE 0 END))
        / SUM(CASE WHEN year = 2022 THEN count ELSE 0 END)::float) * 100 AS percent_change
FROM (
        SELECT
        unnest(string_to_array(Tags, '|')) AS tag,
        EXTRACT(YEAR FROM CreationDate) AS year,
        COUNT(*) AS count
        FROM public.posts
        WHERE EXTRACT(YEAR FROM CreationDate) IN (2022, 2023)
        AND Tags <> ''
        GROUP BY tag, year
) AS yearly_counts
GROUP BY tag
HAVING SUM(CASE WHEN year = 2022 THEN count ELSE 0 END) > 10000
   AND SUM(CASE WHEN year = 2023 THEN count ELSE 0 END) > 10000
ORDER BY percent_change DESC
LIMIT 5;

        tag     | count_2023 | count_2022 |   percent_change
-------------+------------+------------+---------------------
 next.js        |       13712 |         10370 |   32.22757955641273
 spring-boot |          16482 |         17474 |  -5.677005837243905
 .net           |       11376 |         12750 | -10.776470588235295
 azure          |       11938 |         13966 | -14.520979521695546
 docker         |       13832 |         16701 | -17.178612059158134
(5 rows)

Time: 116750.131 ms (01:56.750)

单击这里访问第三部分