ClickHouse 现在提供了一种原生的 JSON 列类型,用于处理半结构化和动态数据。需要特别说明的是,这是一种列类型,而不是一种数据格式——可以将 JSON 作为字符串插入到 ClickHouse 中,或者通过诸如 JSONEachRow 之类的受支持格式进行插入,但这并不意味着在使用 JSON 列类型。只有当数据结构本身是动态的,而不是只是碰巧以 JSON 形式存储时,才应使用 JSON 列类型。
何时使用 JSON 类型
在以下情况下使用 JSON 类型:
- 数据具有不可预测的键名(key),并且这些键名会随着时间变化。
- 数据包含类型各异的值(例如,同一路径上的值有时是字符串,有时是数字)。
- 在模式(schema)上需要较高的灵活性,无法采用严格类型。
如果数据结构是已知且稳定的,即使数据本身是 JSON 格式,通常也很少需要使用 JSON 类型。具体来说,如果数据具有:
- 扁平结构且键名是已知的:使用标准列类型,例如 String。
- 可预测的嵌套结构:对这些结构使用 Tuple、Array 或 Nested 类型。
- 结构可预测但值类型多样:可以考虑使用 Dynamic 或 Variant 类型。
也可以混合使用多种方式——例如,为可预测的顶层字段使用静态列,同时为负载中动态变化的部分使用单个 JSON 列。
使用 JSON 的注意事项和技巧
JSON 类型通过将路径展平成子列,实现了高效的列式存储。但更高的灵活性也意味着需要承担相应的责任。要高效地使用它:
类型提示
类型提示不仅仅是避免不必要类型推断的一种方式——它还能彻底消除存储和处理过程中的间接层。带有类型提示的 JSON 路径始终与传统列以相同方式存储,从而不再需要在查询时依赖判别器列(discriminator columns)或进行动态解析。也就是说,在类型提示定义完善的情况下,嵌套的 JSON 字段可以获得与从一开始就建模为顶层字段几乎相同的性能和效率。因此,对于大多数结构相对稳定、但仍希望保留 JSON 灵活性的数据集,类型提示提供了一种便捷方式,在无需重构模式(schema)或摄取管道的前提下,保持性能。
高级功能
如需更多指导,请参阅 ClickHouse JSON 文档,或查看我们的博文 A New Powerful JSON Data Type for ClickHouse。
请看以下 JSON 示例,它表示来自 Python PyPI 数据集 的一行数据:
{
"date": "2022-11-15",
"country_code": "ES",
"project": "clickhouse-connect",
"type": "bdist_wheel",
"installer": "pip",
"python_minor": "3.9",
"system": "Linux",
"version": "0.3.0"
}
假设这个模式是静态的,且各字段类型都可以被明确定义。即使数据是 NDJSON 格式(每行一条 JSON 记录),对于这样的模式也没有必要使用 JSON 类型。只需使用常规类型来定义该模式即可。
CREATE TABLE pypi (
`date` Date,
`country_code` String,
`project` String,
`type` String,
`installer` String,
`python_minor` String,
`system` String,
`version` String
)
ENGINE = MergeTree
ORDER BY (project, date)
并插入 JSON 记录:
INSERT INTO pypi FORMAT JSONEachRow
{"date":"2022-11-15","country_code":"ES","project":"clickhouse-connect","type":"bdist_wheel","installer":"pip","python_minor":"3.9","system":"Linux","version":"0.3.0"}
以包含 250 万篇学术论文的 arXiv 数据集为例。该数据集以 NDJSON 格式分发,其中每一行代表一篇已发表的学术论文。下面是一行示例数据:
{
"id": "2101.11408",
"submitter": "Daniel Lemire",
"authors": "Daniel Lemire",
"title": "每秒千兆字节级数字解析",
"comments": "软件位于 https://github.com/fastfloat/fast_float 和\n https://github.com/lemire/simple_fastfloat_benchmark/",
"journal-ref": "Software: Practice and Experience 51 (8), 2021",
"doi": "10.1002/spe.2984",
"report-no": null,
"categories": "cs.DS cs.MS",
"license": "http://creativecommons.org/licenses/by/4.0/",
"abstract": "随着磁盘和网络提供每秒千兆字节级的吞吐量....\n",
"versions": [
{
"created": "Mon, 11 Jan 2021 20:31:27 GMT",
"version": "v1"
},
{
"created": "Sat, 30 Jan 2021 23:57:29 GMT",
"version": "v2"
}
],
"update_date": "2022-11-07",
"authors_parsed": [
[
"Lemire",
"Daniel",
""
]
]
}
虽然这里的 JSON 结构复杂且包含嵌套,但它是可预测的,字段的数量和类型是固定的。虽然在本示例中我们可以使用 JSON 类型,但也可以直接使用 Tuples 和 Nested 类型显式定义结构:
CREATE TABLE arxiv
(
`id` String,
`submitter` String,
`authors` String,
`title` String,
`comments` String,
`journal-ref` String,
`doi` String,
`report-no` String,
`categories` String,
`license` String,
`abstract` String,
`versions` Array(Tuple(created String, version String)),
`update_date` Date,
`authors_parsed` Array(Array(String))
)
ENGINE = MergeTree
ORDER BY update_date
同样,我们可以以 JSON 格式插入数据:
INSERT INTO arxiv FORMAT JSONEachRow
{"id":"2101.11408","submitter":"Daniel Lemire","authors":"Daniel Lemire","title":"Number Parsing at a Gigabyte per Second","comments":"Software at https://github.com/fastfloat/fast_float and\n https://github.com/lemire/simple_fastfloat_benchmark/","journal-ref":"Software: Practice and Experience 51 (8), 2021","doi":"10.1002/spe.2984","report-no":null,"categories":"cs.DS cs.MS","license":"http://creativecommons.org/licenses/by/4.0/","abstract":"With disks and networks providing gigabytes per second ....\n","versions":[{"created":"Mon, 11 Jan 2021 20:31:27 GMT","version":"v1"},{"created":"Sat, 30 Jan 2021 23:57:29 GMT","version":"v2"}],"update_date":"2022-11-07","authors_parsed":[["Lemire","Daniel",""]]}
假设新增了一列名为 tags。如果它只是一个字符串列表,我们可以将其建模为 Array(String),但假设用户可以添加具有混合类型的任意标签结构(注意 score 可能是字符串或整数)。我们修改后的 JSON 文档如下:
{
"id": "2101.11408",
"submitter": "Daniel Lemire",
"authors": "Daniel Lemire",
"title": "每秒千兆字节的数字解析速度",
"comments": "软件地址:https://github.com/fastfloat/fast_float 和\n https://github.com/lemire/simple_fastfloat_benchmark/",
"journal-ref": "Software: Practice and Experience 51 (8), 2021",
"doi": "10.1002/spe.2984",
"report-no": null,
"categories": "cs.DS cs.MS",
"license": "http://creativecommons.org/licenses/by/4.0/",
"abstract": "随着磁盘和网络提供每秒千兆字节的传输速度....\n",
"versions": [
{
"created": "Mon, 11 Jan 2021 20:31:27 GMT",
"version": "v1"
},
{
"created": "Sat, 30 Jan 2021 23:57:29 GMT",
"version": "v2"
}
],
"update_date": "2022-11-07",
"authors_parsed": [
[
"Lemire",
"Daniel",
""
]
],
"tags": {
"tag_1": {
"name": "ClickHouse 用户",
"score": "A+",
"comment": "值得一读,适用于 ClickHouse",
},
"28_03_2025": {
"name": "professor X",
"score": 10,
"comment": "收获不大",
"updates": [
{
"name": "professor X",
"comment": "发现金刚狼的内容更有趣"
}
]
}
}
}
在本例中,我们可以将 arXiv 文档建模为全部使用 JSON,或者仅添加一个 JSON 类型的 tags 列。下面给出这两种示例:
CREATE TABLE arxiv
(
`doc` JSON(update_date Date)
)
ENGINE = MergeTree
ORDER BY doc.update_date
注意
我们在 JSON 定义中为 update_date 列提供了类型提示,因为会在排序/主键中使用该列。这有助于 ClickHouse 确定该列不会为 null,并确保它知道应使用哪个 update_date 子列(每种类型可能都有多个子列,否则就会产生歧义)。
我们可以向该表插入数据,并使用 JSONAllPathsWithTypes 函数和 PrettyJSONEachRow 输出格式查看后续推断出的 schema:
INSERT INTO arxiv FORMAT JSONAsObject
{"id":"2101.11408","submitter":"Daniel Lemire","authors":"Daniel Lemire","title":"每秒千兆字节的数字解析","comments":"软件位于 https://github.com/fastfloat/fast_float 和\n https://github.com/lemire/simple_fastfloat_benchmark/","journal-ref":"Software: Practice and Experience 51 (8), 2021","doi":"10.1002/spe.2984","report-no":null,"categories":"cs.DS cs.MS","license":"http://creativecommons.org/licenses/by/4.0/","abstract":"随着磁盘和网络提供每秒千兆字节的速度....\n","versions":[{"created":"Mon, 11 Jan 2021 20:31:27 GMT","version":"v1"},{"created":"Sat, 30 Jan 2021 23:57:29 GMT","version":"v2"}],"update_date":"2022-11-07","authors_parsed":[["Lemire","Daniel",""]],"tags":{"tag_1":{"name":"ClickHouse user","score":"A+","comment":"值得一读,适用于 ClickHouse"},"28_03_2025":{"name":"professor X","score":10,"comment":"收获不大","updates":[{"name":"professor X","comment":"Wolverine 觉得更有趣"}]}}}
SELECT JSONAllPathsWithTypes(doc)
FROM arxiv
FORMAT PrettyJSONEachRow
{
"JSONAllPathsWithTypes(doc)": {
"abstract": "String",
"authors": "String",
"authors_parsed": "Array(Array(Nullable(String)))",
"categories": "String",
"comments": "String",
"doi": "String",
"id": "String",
"journal-ref": "String",
"license": "String",
"submitter": "String",
"tags.28_03_2025.comment": "String",
"tags.28_03_2025.name": "String",
"tags.28_03_2025.score": "Int64",
"tags.28_03_2025.updates": "Array(JSON(max_dynamic_types=16, max_dynamic_paths=256))",
"tags.tag_1.comment": "String",
"tags.tag_1.name": "String",
"tags.tag_1.score": "String",
"title": "String",
"update_date": "Date",
"versions": "Array(JSON(max_dynamic_types=16, max_dynamic_paths=256))"
}
}
返回 1 行。用时:0.003 秒。
或者,我们也可以使用之前的 schema,并通过一个 JSON tags 列来建模。通常更推荐这种方式,因为它可以最大程度减少 ClickHouse 所需的推断工作:
CREATE TABLE arxiv
(
`id` String,
`submitter` String,
`authors` String,
`title` String,
`comments` String,
`journal-ref` String,
`doi` String,
`report-no` String,
`categories` String,
`license` String,
`abstract` String,
`versions` Array(Tuple(created String, version String)),
`update_date` Date,
`authors_parsed` Array(Array(String)),
`tags` JSON()
)
ENGINE = MergeTree
ORDER BY update_date
INSERT INTO arxiv FORMAT JSONEachRow
{"id":"2101.11408","submitter":"Daniel Lemire","authors":"Daniel Lemire","title":"Number Parsing at a Gigabyte per Second","comments":"Software at https://github.com/fastfloat/fast_float and\n https://github.com/lemire/simple_fastfloat_benchmark/","journal-ref":"Software: Practice and Experience 51 (8), 2021","doi":"10.1002/spe.2984","report-no":null,"categories":"cs.DS cs.MS","license":"http://creativecommons.org/licenses/by/4.0/","abstract":"With disks and networks providing gigabytes per second ....\n","versions":[{"created":"Mon, 11 Jan 2021 20:31:27 GMT","version":"v1"},{"created":"Sat, 30 Jan 2021 23:57:29 GMT","version":"v2"}],"update_date":"2022-11-07","authors_parsed":[["Lemire","Daniel",""]],"tags":{"tag_1":{"name":"ClickHouse 用户","score":"A+","comment":"值得一读,适用于 ClickHouse"},"28_03_2025":{"name":"professor X","score":10,"comment":"收获不大","updates":[{"name":"professor X","comment":"金刚狼认为更有意思"}]}}}
现在我们就可以推断出子列 tags 的类型了。
SELECT JSONAllPathsWithTypes(tags)
FROM arxiv
FORMAT PrettyJSONEachRow
{
"JSONAllPathsWithTypes(tags)": {
"28_03_2025.comment": "String",
"28_03_2025.name": "String",
"28_03_2025.score": "Int64",
"28_03_2025.updates": "Array(JSON(max_dynamic_types=16, max_dynamic_paths=256))",
"tag_1.comment": "String",
"tag_1.name": "String",
"tag_1.score": "String"
}
}
1 row in set. Elapsed: 0.002 sec.