CREATE TABLE test
(
a Nullable(String),
b Nullable(Int64)
)
ENGINE = Memory AS
SELECT *
FROM VALUES((NULL, 0), ('a', 1), ('b', 2), ('c', 2), (NULL, NULL), ('d', NULL));
SELECT * FROM test;
┌─a────┬────b─┐
│ ᴺᵁᴸᴸ │ 0 │
│ a │ 1 │
│ b │ 2 │
│ c │ 2 │
│ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │
│ d │ ᴺᵁᴸᴸ │
└──────┴──────┘
SELECT argMin(a,b), argAndMin(a, b), min(b) FROM test;
┌─argMin(a, b)─┬─argAndMin(a, b)─┬─min(b)─┐
│ a │ ('a',1) │ 0 │ -- argMin = a because it's the first not `NULL` value, min(b) is from another row!
└──────────────┴─────────────────┴────────┘
SELECT argAndMin(tuple(a), b) FROM test;
┌─argAndMin((a), b)─┐
│ ((NULL),0) │ -- The 'a' `Tuple` that contains only a `NULL` value is not `NULL`, so the aggregate functions won't skip that row because of that `NULL` value
└───────────────────┘
SELECT (argAndMin((a, b), b) as t).1 argMinA, t.2 argMinB from test;
┌─argMinA──┬─argMinB─┐
│ (NULL,0) │ 0 │ -- you can use `Tuple` and get both (all - tuple(*)) columns for the according min(b)
└──────────┴─────────┘
SELECT argAndMin(a, b), min(b) FROM test WHERE a IS NULL and b IS NULL;
┌─argAndMin(a, b)─┬─min(b)─┐
│ ('',0) │ ᴺᵁᴸᴸ │ -- All aggregated rows contains at least one `NULL` value because of the filter, so all rows are skipped, therefore the result will be `NULL`
└─────────────────┴────────┘
SELECT argAndMin(a, (b, a)), min(tuple(b, a)) FROM test;
┌─argAndMin(a, (b, a))─┬─min((b, a))─┐
│ ('a',(1,'a')) │ (0,NULL) │ -- 'a' is the first not `NULL` value for the min
└──────────────────────┴─────────────┘
SELECT argAndMin((a, b), (b, a)), min(tuple(b, a)) FROM test;
┌─argAndMin((a, b), (b, a))─┬─min((b, a))─┐
│ ((NULL,0),(0,NULL)) │ (0,NULL) │ -- argAndMin returns ((NULL,0),(0,NULL)) here because `Tuple` allows to don't skip `NULL` and min(tuple(b, a)) in this case is minimal value for this dataset
└───────────────────────────┴─────────────┘
SELECT argAndMin(a, tuple(b)) FROM test;
┌─argAndMin(a, (b))─┐
│ ('a',(1)) │ -- `Tuple` can be used in `min` to not skip rows with `NULL` values as b.
└───────────────────┘