メインコンテンツまでスキップ
メインコンテンツまでスキップ

JupySQL and chDB

JupySQL は、Jupyter ノートブックや IPython シェルで SQL を実行するための Python ライブラリです。このガイドでは、chDB と JupySQL を使用してデータをクエリする方法を学びます。

セットアップ

まず、仮想環境を作成しましょう:

python -m venv .venv
source .venv/bin/activate

その後、JupySQL、IPython、Jupyter Lab をインストールします:

pip install jupysql ipython jupyterlab

IPython では JupySQL を使用でき、次のコマンドを実行して起動できます:

ipython

または、Jupyter Lab を次のコマンドで起動できます:

jupyter lab
注記

Jupyter Lab を使用している場合は、ガイドの残りの部分をフォローする前にノートブックを作成する必要があります。

データセットのダウンロード

Jeff Sackmann の tennis_atp データセットの1つを使用します。このデータセットは、選手とそのランキングに関するメタデータが含まれています。まず、ランキングファイルをダウンロードします:

from urllib.request import urlretrieve
files = ['00s', '10s', '20s', '70s', '80s', '90s', 'current']
base = "https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master"
for file in files:
  _ = urlretrieve(
    f"{base}/atp_rankings_{file}.csv",
    f"atp_rankings_{file}.csv",
  )

chDB と JupySQL の設定

次に、chDB の dbapi モジュールをインポートします:

from chdb import dbapi

そして、chDB 接続を作成します。永続化するデータは atp.chdb ディレクトリに保存されます:

conn = dbapi.connect(path="atp.chdb")

次に、sql マジックを読み込み、chDB への接続を作成します:

%load_ext sql
%sql conn --alias chdb

クエリの結果が切り捨てられないように、表示制限を設定します:

%config SqlMagic.displaylimit = None

CSV ファイル内のデータをクエリする

atp_rankings プレフィックスのついた複数のファイルをダウンロードしました。DESCRIBE 句を使用してスキーマを理解しましょう:

%%sql
DESCRIBE file('atp_rankings*.csv')
SETTINGS describe_compact_output=1,
         schema_inference_make_columns_nullable=0
+--------------+-------+
|     name     |  type |
+--------------+-------+
| ranking_date | Int64 |
|     rank     | Int64 |
|    player    | Int64 |
|    points    | Int64 |
+--------------+-------+

これらのファイルに対して直接 SELECT クエリを書いて、データがどのようなものか見てみましょう:

%sql SELECT * FROM file('atp_rankings*.csv') LIMIT 1
+--------------+------+--------+--------+
| ranking_date | rank | player | points |
+--------------+------+--------+--------+
|   20000110   |  1   | 101736 |  4135  |
+--------------+------+--------+--------+

データの形式は少し変わっています。日付をきれいにして、REPLACE 句を使用してクリーンアップした ranking_date を返します:

%%sql
SELECT * REPLACE (
  toDate(parseDateTime32BestEffort(toString(ranking_date))) AS ranking_date
)
FROM file('atp_rankings*.csv')
LIMIT 10
SETTINGS schema_inference_make_columns_nullable=0
+--------------+------+--------+--------+
| ranking_date | rank | player | points |
+--------------+------+--------+--------+
|  2000-01-10  |  1   | 101736 |  4135  |
|  2000-01-10  |  2   | 102338 |  2915  |
|  2000-01-10  |  3   | 101948 |  2419  |
|  2000-01-10  |  4   | 103017 |  2184  |
|  2000-01-10  |  5   | 102856 |  2169  |
|  2000-01-10  |  6   | 102358 |  2107  |
|  2000-01-10  |  7   | 102839 |  1966  |
|  2000-01-10  |  8   | 101774 |  1929  |
|  2000-01-10  |  9   | 102701 |  1846  |
|  2000-01-10  |  10  | 101990 |  1739  |
+--------------+------+--------+--------+

chDB に CSV ファイルをインポートする

次に、これらの CSV ファイルからデータをテーブルに格納します。デフォルトのデータベースはディスク上にデータを永続化しないため、まず別のデータベースを作成する必要があります:

%sql CREATE DATABASE atp

そして、CSV ファイルのデータの構造に基づいて rankings という名前のテーブルを作成します:

%%sql
CREATE TABLE atp.rankings
ENGINE=MergeTree
ORDER BY ranking_date AS
SELECT * REPLACE (
  toDate(parseDateTime32BestEffort(toString(ranking_date))) AS ranking_date
)
FROM file('atp_rankings*.csv')
SETTINGS schema_inference_make_columns_nullable=0

テーブル内のデータを簡単にチェックします:

%sql SELECT * FROM atp.rankings LIMIT 10
+--------------+------+--------+--------+
| ranking_date | rank | player | points |
+--------------+------+--------+--------+
|  2000-01-10  |  1   | 101736 |  4135  |
|  2000-01-10  |  2   | 102338 |  2915  |
|  2000-01-10  |  3   | 101948 |  2419  |
|  2000-01-10  |  4   | 103017 |  2184  |
|  2000-01-10  |  5   | 102856 |  2169  |
|  2000-01-10  |  6   | 102358 |  2107  |
|  2000-01-10  |  7   | 102839 |  1966  |
|  2000-01-10  |  8   | 101774 |  1929  |
|  2000-01-10  |  9   | 102701 |  1846  |
|  2000-01-10  |  10  | 101990 |  1739  |
+--------------+------+--------+--------+

良さそうです - 出力は予想通り、CSV ファイルを直接クエリしたときと同じです。

選手のメタデータについても同じプロセスを実行します。今回はデータが1つの CSV ファイルにすべて入っているので、そのファイルをダウンロードしましょう:

_ = urlretrieve(
    f"{base}/atp_players.csv",
    "atp_players.csv",
)

その後、CSV ファイルの内容に基づいて players という名前のテーブルを作成します。dob フィールドもクリーンアップして、Date32 型にします。

ClickHouse では、Date 型は 1970 年以降の日付のみをサポートしています。dob 列には 1970 年以前の日付が含まれているため、Date32 型を代わりに使用します。

%%sql
CREATE TABLE atp.players
Engine=MergeTree
ORDER BY player_id AS
SELECT * REPLACE (
  makeDate32(
    toInt32OrNull(substring(toString(dob), 1, 4)),
    toInt32OrNull(substring(toString(dob), 5, 2)),
    toInt32OrNull(substring(toString(dob), 7, 2))
  )::Nullable(Date32) AS dob
)
FROM file('atp_players.csv')
SETTINGS schema_inference_make_columns_nullable=0

これが実行されると、取り込んだデータを確認できます:

%sql SELECT * FROM atp.players LIMIT 10
+-----------+------------+-----------+------+------------+-----+--------+-------------+
| player_id | name_first | name_last | hand |    dob     | ioc | height | wikidata_id |
+-----------+------------+-----------+------+------------+-----+--------+-------------+
|   100001  |  Gardnar   |   Mulloy  |  R   | 1913-11-22 | USA |  185   |    Q54544   |
|   100002  |   Pancho   |   Segura  |  R   | 1921-06-20 | ECU |  168   |    Q54581   |
|   100003  |   Frank    |  Sedgman  |  R   | 1927-10-02 | AUS |  180   |   Q962049   |
|   100004  |  Giuseppe  |   Merlo   |  R   | 1927-10-11 | ITA |   0    |   Q1258752  |
|   100005  |  Richard   |  Gonzalez |  R   | 1928-05-09 | USA |  188   |    Q53554   |
|   100006  |   Grant    |   Golden  |  R   | 1929-08-21 | USA |  175   |   Q3115390  |
|   100007  |    Abe     |   Segal   |  L   | 1930-10-23 | RSA |   0    |   Q1258527  |
|   100008  |    Kurt    |  Nielsen  |  R   | 1930-11-19 | DEN |   0    |   Q552261   |
|   100009  |   Istvan   |   Gulyas  |  R   | 1931-10-14 | HUN |   0    |    Q51066   |
|   100010  |    Luis    |   Ayala   |  R   | 1932-09-18 | CHI |  170   |   Q1275397  |
+-----------+------------+-----------+------+------------+-----+--------+-------------+

chDB をクエリする

データの取り込みが完了し、次は楽しい部分 - データをクエリします!

テニス選手は、参加するトーナメントでのパフォーマンスに基づいてポイントを受け取ります。各選手のポイントは、52 週間のローリング期間にわたって集計されます。各選手が獲得した最大ポイントと、その時のランキングを見つけるクエリを書きます:

%%sql
SELECT name_first, name_last,
       max(points) as maxPoints,
       argMax(rank, points) as rank,
       argMax(ranking_date, points) as date
FROM atp.players
JOIN atp.rankings ON rankings.player = players.player_id
GROUP BY ALL
ORDER BY maxPoints DESC
LIMIT 10
+------------+-----------+-----------+------+------------+
| name_first | name_last | maxPoints | rank |    date    |
+------------+-----------+-----------+------+------------+
|   Novak    |  Djokovic |   16950   |  1   | 2016-06-06 |
|   Rafael   |   Nadal   |   15390   |  1   | 2009-04-20 |
|    Andy    |   Murray  |   12685   |  1   | 2016-11-21 |
|   Roger    |  Federer  |   12315   |  1   | 2012-10-29 |
|   Daniil   |  Medvedev |   10780   |  2   | 2021-09-13 |
|   Carlos   |  Alcaraz  |    9815   |  1   | 2023-08-21 |
|  Dominic   |   Thiem   |    9125   |  3   | 2021-01-18 |
|   Jannik   |   Sinner  |    8860   |  2   | 2024-05-06 |
|  Stefanos  | Tsitsipas |    8350   |  3   | 2021-09-20 |
| Alexander  |   Zverev  |    8240   |  4   | 2021-08-23 |
+------------+-----------+-----------+------+------------+

このリストにある選手のうち、ポイントが1位でなくても多くのポイントを累積している選手がいるのは非常に興味深いです。

クエリを保存する

--save パラメータを使用して同じ行にクエリを保存できます。--no-execute パラメータは、クエリの実行をスキップすることを意味します。

%%sql --save best_points --no-execute
SELECT name_first, name_last,
       max(points) as maxPoints,
       argMax(rank, points) as rank,
       argMax(ranking_date, points) as date
FROM atp.players
JOIN atp.rankings ON rankings.player = players.player_id
GROUP BY ALL
ORDER BY maxPoints DESC

保存されたクエリを実行すると、実行前に共通テーブル式(CTE)に変換されます。次のクエリでは、選手がランキング1位の時に達成した最大ポイントを計算します:

%sql select * FROM best_points WHERE rank=1
+-------------+-----------+-----------+------+------------+
|  name_first | name_last | maxPoints | rank |    date    |
+-------------+-----------+-----------+------+------------+
|    Novak    |  Djokovic |   16950   |  1   | 2016-06-06 |
|    Rafael   |   Nadal   |   15390   |  1   | 2009-04-20 |
|     Andy    |   Murray  |   12685   |  1   | 2016-11-21 |
|    Roger    |  Federer  |   12315   |  1   | 2012-10-29 |
|    Carlos   |  Alcaraz  |    9815   |  1   | 2023-08-21 |
|     Pete    |  Sampras  |    5792   |  1   | 1997-08-11 |
|    Andre    |   Agassi  |    5652   |  1   | 1995-08-21 |
|   Lleyton   |   Hewitt  |    5205   |  1   | 2002-08-12 |
|   Gustavo   |  Kuerten  |    4750   |  1   | 2001-09-10 |
| Juan Carlos |  Ferrero  |    4570   |  1   | 2003-10-20 |
|    Stefan   |   Edberg  |    3997   |  1   | 1991-02-25 |
|     Jim     |  Courier  |    3973   |  1   | 1993-08-23 |
|     Ivan    |   Lendl   |    3420   |  1   | 1990-02-26 |
|     Ilie    |  Nastase  |     0     |  1   | 1973-08-27 |
+-------------+-----------+-----------+------+------------+

パラメータを使ったクエリ

クエリ内でパラメータを使用することもできます。パラメータは通常の変数です:

rank = 10

そして、{{variable}} 構文をクエリ内で使用できます。次のクエリは、選手が最初にトップ 10 にランキングされてから最後にランキングがあるまでの日数が最も少ない選手を見つけます:

%%sql
SELECT name_first, name_last,
       MIN(ranking_date) AS earliest_date,
       MAX(ranking_date) AS most_recent_date,
       most_recent_date - earliest_date AS days,
       1 + (days/7) AS weeks
FROM atp.rankings
JOIN atp.players ON players.player_id = rankings.player
WHERE rank <= {{rank}}
GROUP BY ALL
ORDER BY days
LIMIT 10
+------------+-----------+---------------+------------------+------+-------+
| name_first | name_last | earliest_date | most_recent_date | days | weeks |
+------------+-----------+---------------+------------------+------+-------+
|    Alex    | Metreveli |   1974-06-03  |    1974-06-03    |  0   |   1   |
|   Mikael   |  Pernfors |   1986-09-22  |    1986-09-22    |  0   |   1   |
|   Felix    |  Mantilla |   1998-06-08  |    1998-06-08    |  0   |   1   |
|   Wojtek   |   Fibak   |   1977-07-25  |    1977-07-25    |  0   |   1   |
|  Thierry   |  Tulasne  |   1986-08-04  |    1986-08-04    |  0   |   1   |
|   Lucas    |  Pouille  |   2018-03-19  |    2018-03-19    |  0   |   1   |
|    John    | Alexander |   1975-12-15  |    1975-12-15    |  0   |   1   |
|  Nicolas   |   Massu   |   2004-09-13  |    2004-09-20    |  7   |   2   |
|   Arnaud   |  Clement  |   2001-04-02  |    2001-04-09    |  7   |   2   |
|  Ernests   |   Gulbis  |   2014-06-09  |    2014-06-23    |  14  |   3   |
+------------+-----------+---------------+------------------+------+-------+

ヒストグラムのプロット

JupySQL には限られたチャート機能もあります。ボックスプロットやヒストグラムを作成できます。

ヒストグラムを作成しますが、まずは各プレイヤーが達成したトップ100のランキングを計算するクエリを書いて(保存します)、これを使ってヒストグラムを作成します:

%%sql --save players_per_rank --no-execute
select distinct player, rank
FROM atp.rankings
WHERE rank <= 100

次に、以下のコードを実行してヒストグラムを作成できます:

from sql.ggplot import ggplot, geom_histogram, aes

plot = (
  ggplot(
    table="players_per_rank",
    with_="players_per_rank",
    mapping=aes(x="rank", fill="#69f0ae", color="#fff"),
  ) + geom_histogram(bins=100)
)
ATP データセットにおけるプレイヤーランクのヒストグラム