TimeSeries Engine
A table engine storing time series, i.e. a set of values associated with timestamps and tags (or labels):
metric_name1[tag1=value1, tag2=value2, ...] = {timestamp1: value1, timestamp2: value2, ...}
metric_name2[...] = ...
This is an experimental feature that may change in backwards-incompatible ways in the future releases.
Enable usage of the TimeSeries table engine
with allow_experimental_time_series_table setting.
Input the command set allow_experimental_time_series_table = 1
.
Syntax
CREATE TABLE name [(columns)] ENGINE=TimeSeries
[SETTINGS var1=value1, ...]
[DATA db.data_table_name | DATA ENGINE data_table_engine(arguments)]
[TAGS db.tags_table_name | TAGS ENGINE tags_table_engine(arguments)]
[METRICS db.metrics_table_name | METRICS ENGINE metrics_table_engine(arguments)]
Usage
It's easier to start with everything set by default (it's allowed to create a TimeSeries
table without specifying a list of columns):
CREATE TABLE my_table ENGINE=TimeSeries
Then this table can be used with the following protocols (a port must be assigned in the server configuration):
Target tables
A TimeSeries
table doesn't have its own data, everything is stored in its target tables.
This is similar to how a materialized view works,
with the difference that a materialized view has one target table
whereas a TimeSeries
table has three target tables named [data]{#data-table}, [tags]{#tags-table], and [metrics]{#metrics-table}.
The target tables can be either specified explicitly in the CREATE TABLE
query
or the TimeSeries
table engine can generate inner target tables automatically.
The target tables are the following:
- The data table {#data-table} contains time series associated with some identifier. The data table must have columns:
Name | Mandatory? | Default type | Possible types | Description |
---|---|---|---|---|
id | [x] | UUID | any | Identifies a combination of a metric names and tags |
timestamp | [x] | DateTime64(3) | DateTime64(X) | A time point |
value | [x] | Float64 | Float32 or Float64 | A value associated with the timestamp |
- The tags table {#tags-table} contains identifiers calculated for each combination of a metric name and tags. The tags table must have columns:
Name | Mandatory? | Default type | Possible types | Description |
---|---|---|---|---|
id | [x] | UUID | any (must match the type of id in the [data]{#data-table} table) | An id identifies a combination of a metric name and tags. The DEFAULT expression specifies how to calculate such an identifier |
metric_name | [x] | LowCardinality(String) | String or LowCardinality(String) | The name of a metric |
<tag_value_column> | [ ] | String | String or LowCardinality(String) or LowCardinality(Nullable(String)) | The value of a specific tag, the tag's name and the name of a corresponding column are specified in the tags_to_columns setting |
tags | [x] | Map(LowCardinality(String), String) | Map(String, String) or Map(LowCardinality(String), String) or Map(LowCardinality(String), LowCardinality(String)) | Map of tags excluding the tag __name__ containing the name of a metric and excluding tags with names enumerated in the tags_to_columns setting |
all_tags | [ ] | Map(String, String) | Map(String, String) or Map(LowCardinality(String), String) or Map(LowCardinality(String), LowCardinality(String)) | Ephemeral column, each row is a map of all the tags excluding only the tag __name__ containing the name of a metric. The only purpose of that column is to be used while calculating id |
min_time | [ ] | Nullable(DateTime64(3)) | DateTime64(X) or Nullable(DateTime64(X)) | Minimum timestamp of time series with that id . The column is created if store_min_time_and_max_time is true |
max_time | [ ] | Nullable(DateTime64(3)) | DateTime64(X) or Nullable(DateTime64(X)) | Maximum timestamp of time series with that id . The column is created if store_min_time_and_max_time is true |
- The metrics table {#metrics-table} contains some information about metrics been collected, the types of those metrics and their descriptions. The metrics table must have columns:
Name | Mandatory? | Default type | Possible types | Description |
---|---|---|---|---|
metric_family_name | [x] | String | String or LowCardinality(String) | The name of a metric family |
type | [x] | String | String or LowCardinality(String) | The type of a metric family, one of "counter", "gauge", "summary", "stateset", "histogram", "gaugehistogram" |
unit | [x] | String | String or LowCardinality(String) | The unit used in a metric |
help | [x] | String | String or LowCardinality(String) | The description of a metric |
Any row inserted into a TimeSeries
table will be in fact stored in those three target tables.
A TimeSeries
table contains all those columns from the [data]{#data-table}, [tags]{#tags-table}, [metrics]{#metrics-table} tables.
Creation
There are multiple ways to create a table with the TimeSeries
table engine.
The simplest statement
CREATE TABLE my_table ENGINE=TimeSeries
will actually create the following table (you can see that by executing SHOW CREATE TABLE my_table
):
CREATE TABLE my_table
(
`id` UUID DEFAULT reinterpretAsUUID(sipHash128(metric_name, all_tags)),
`timestamp` DateTime64(3),
`value` Float64,
`metric_name` LowCardinality(String),
`tags` Map(LowCardinality(String), String),
`all_tags` Map(String, String),
`min_time` Nullable(DateTime64(3)),
`max_time` Nullable(DateTime64(3)),
`metric_family_name` String,
`type` String,
`unit` String,
`help` String
)
ENGINE = TimeSeries
DATA ENGINE = MergeTree ORDER BY (id, timestamp)
DATA INNER UUID '01234567-89ab-cdef-0123-456789abcdef'
TAGS ENGINE = AggregatingMergeTree PRIMARY KEY metric_name ORDER BY (metric_name, id)
TAGS INNER UUID '01234567-89ab-cdef-0123-456789abcdef'
METRICS ENGINE = ReplacingMergeTree ORDER BY metric_family_name
METRICS INNER UUID '01234567-89ab-cdef-0123-456789abcdef'
So the columns were generated automatically and also there are three inner UUIDs in this statement - one per each inner target table that was created. (Inner UUIDs are not shown normally until setting show_table_uuid_in_table_create_query_if_not_nil is set.)
Inner target tables have names like .inner_id.data.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
,
.inner_id.tags.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
, .inner_id.metrics.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
and each target table has columns which is a subset of the columns of the main TimeSeries
table:
CREATE TABLE default.`.inner_id.data.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx`
(
`id` UUID,
`timestamp` DateTime64(3),
`value` Float64
)
ENGINE = MergeTree
ORDER BY (id, timestamp)
CREATE TABLE default.`.inner_id.tags.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx`
(
`id` UUID DEFAULT reinterpretAsUUID(sipHash128(metric_name, all_tags)),
`metric_name` LowCardinality(String),
`tags` Map(LowCardinality(String), String),
`all_tags` Map(String, String) EPHEMERAL,
`min_time` SimpleAggregateFunction(min, Nullable(DateTime64(3))),
`max_time` SimpleAggregateFunction(max, Nullable(DateTime64(3)))
)
ENGINE = AggregatingMergeTree
PRIMARY KEY metric_name
ORDER BY (metric_name, id)
CREATE TABLE default.`.inner_id.metrics.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx`
(
`metric_family_name` String,
`type` String,
`unit` String,
`help` String
)
ENGINE = ReplacingMergeTree
ORDER BY metric_family_name
Adjusting types of columns
You can adjust the types of almost any column of the inner target tables by specifying them explicitly while defining the main table. For example,
CREATE TABLE my_table
(
timestamp DateTime64(6)
) ENGINE=TimeSeries
will make the inner [data]{#data-table} table store timestamp in microseconds instead of milliseconds:
CREATE TABLE default.`.inner_id.data.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx`
(
`id` UUID,
`timestamp` DateTime64(6),
`value` Float64
)
ENGINE = MergeTree
ORDER BY (id, timestamp)
The id
column
The id
column contains identifiers, every identifier is calculated for a combination of a metric name and tags.
The DEFAULT expression for the id
column is an expression which will be used to calculate such identifiers.
Both the type of the id
column and that expression can be adjusted by specifying them explicitly:
CREATE TABLE my_table
(
id UInt64 DEFAULT sipHash64(metric_name, all_tags)
) ENGINE=TimeSeries
The tags
and all_tags
columns
There are two columns containing maps of tags - tags
and all_tags
. In this example they mean the same, however they can be different
if setting tags_to_columns
is used. This setting allows to specify that a specific tag should be stored in a separate column instead of storing
in a map inside the tags
column:
CREATE TABLE my_table ENGINE=TimeSeries SETTINGS = {'instance': 'instance', 'job': 'job'}
This statement will add columns
`instance` String,
`job` String
to the definition of both my_table
and its inner [tags]{#tags-table} target table. In this case the tags
column will not contain tags instance
and job
,
but the all_tags
column will contain them. The all_tags
column is ephemeral and its only purpose to be used in the DEFAULT expression
for the id
column.
The types of columns can be adjusted by specifying them explicitly:
CREATE TABLE my_table (instance LowCardinality(String), job LowCardinality(Nullable(String)))
ENGINE=TimeSeries SETTINGS = {'instance': 'instance', 'job': 'job'}
Table engines of inner target tables
By default inner target tables use the following table engines:
- the [data]{#data-table} table uses MergeTree;
- the [tags]{#tags-table} table uses AggregatingMergeTree because the same data is often inserted multiple times to this table so we need a way
to remove duplicates, and also because it's required to do aggregation for columns
min_time
andmax_time
; - the [metrics]{#metrics-table} table uses ReplacingMergeTree because the same data is often inserted multiple times to this table so we need a way to remove duplicates.
Other table engines also can be used for inner target tables if it's specified so:
CREATE TABLE my_table ENGINE=TimeSeries
DATA ENGINE=ReplicatedMergeTree
TAGS ENGINE=ReplicatedAggregatingMergeTree
METRICS ENGINE=ReplicatedReplacingMergeTree
External target tables
It's possible to make a TimeSeries
table use a manually created table:
CREATE TABLE data_for_my_table
(
`id` UUID,
`timestamp` DateTime64(3),
`value` Float64
)
ENGINE = MergeTree
ORDER BY (id, timestamp);
CREATE TABLE tags_for_my_table ...
CREATE TABLE metrics_for_my_table ...
CREATE TABLE my_table ENGINE=TimeSeries DATA data_for_my_table TAGS tags_for_my_table METRICS metrics_for_my_table;
Settings
Here is a list of settings which can be specified while defining a TimeSeries
table:
Name | Type | Default | Description |
---|---|---|---|
tags_to_columns | Map | {} | Map specifying which tags should be put to separate columns in the [tags]{#tags-table} table. Syntax: {'tag1': 'column1', 'tag2' : column2, ...} |
use_all_tags_column_to_generate_id | Bool | true | When generating an expression to calculate an identifier of a time series, this flag enables using the all_tags column in that calculation |
store_min_time_and_max_time | Bool | true | If set to true then the table will store min_time and max_time for each time series |
aggregate_min_time_and_max_time | Bool | true | When creating an inner target tags table, this flag enables using SimpleAggregateFunction(min, Nullable(DateTime64(3))) instead of just Nullable(DateTime64(3)) as the type of the min_time column, and the same for the max_time column |
filter_by_min_time_and_max_time | Bool | true | If set to true then the table will use the min_time and max_time columns for filtering time series |
Functions
Here is a list of functions supporting a TimeSeries
table as an argument: