Installing chDB for Python
Requirements
- Python 3.8+
- Supported platforms: macOS and Linux (x86_64 and ARM64)
Installation
pip install chdb
Usage
Command line interface
Run SQL queries directly from the command line:
# Basic query
python3 -m chdb "SELECT 1, 'abc'" Pretty
# Query with formatting
python3 -m chdb "SELECT version()" JSON
Basic python usage
import chdb
# Simple query
result = chdb.query("SELECT 1 as id, 'Hello World' as message", "CSV")
print(result)
# Get query statistics
print(f"Rows read: {result.rows_read()}")
print(f"Bytes read: {result.bytes_read()}")
print(f"Execution time: {result.elapsed()} seconds")
Connection-based API (recommended)
For better resource management and performance:
import chdb
# Create connection (in-memory by default)
conn = chdb.connect(":memory:")
# Or use file-based: conn = chdb.connect("mydata.db")
# Create cursor for query execution
cur = conn.cursor()
# Execute queries
cur.execute("SELECT number, toString(number) as str FROM system.numbers LIMIT 3")
# Fetch results in different ways
print(cur.fetchone()) # Single row: (0, '0')
print(cur.fetchmany(2)) # Multiple rows: ((1, '1'), (2, '2'))
# Get metadata
print(cur.column_names()) # ['number', 'str']
print(cur.column_types()) # ['UInt64', 'String']
# Use cursor as iterator
for row in cur:
print(row)
# Always close resources
cur.close()
conn.close()
Data input methods
File-based data sources
chDB supports 70+ data formats for direct file querying:
import chdb
# Prepare your data
# ...
# Query Parquet files
result = chdb.query("""
SELECT customer_id, sum(amount) as total
FROM file('sales.parquet', Parquet)
GROUP BY customer_id
ORDER BY total DESC
LIMIT 10
""", 'JSONEachRow')
# Query CSV with headers
result = chdb.query("""
SELECT * FROM file('data.csv', CSVWithNames)
WHERE column1 > 100
""", 'DataFrame')
# Multiple file formats
result = chdb.query("""
SELECT * FROM file('logs*.jsonl', JSONEachRow)
WHERE timestamp > '2024-01-01'
""", 'Pretty')
Output format examples
# DataFrame for analysis
df = chdb.query('SELECT * FROM system.numbers LIMIT 5', 'DataFrame')
print(type(df)) # <class 'pandas.core.frame.DataFrame'>
# Arrow Table for interoperability
arrow_table = chdb.query('SELECT * FROM system.numbers LIMIT 5', 'ArrowTable')
print(type(arrow_table)) # <class 'pyarrow.lib.Table'>
# JSON for APIs
json_result = chdb.query('SELECT version()', 'JSON')
print(json_result)
# Pretty format for debugging
pretty_result = chdb.query('SELECT * FROM system.numbers LIMIT 3', 'Pretty')
print(pretty_result)
DataFrame operations
Legacy DataFrame API
import chdb.dataframe as cdf
import pandas as pd
# Join multiple DataFrames
df1 = pd.DataFrame({'a': [1, 2, 3], 'b': ["one", "two", "three"]})
df2 = pd.DataFrame({'c': [1, 2, 3], 'd': ["①", "②", "③"]})
result_df = cdf.query(
sql="SELECT * FROM __tbl1__ t1 JOIN __tbl2__ t2 ON t1.a = t2.c",
tbl1=df1,
tbl2=df2
)
print(result_df)
# Query the result DataFrame
summary = result_df.query('SELECT b, sum(a) FROM __table__ GROUP BY b')
print(summary)
Python table engine (recommended)
import chdb
import pandas as pd
import pyarrow as pa
# Query Pandas DataFrame directly
df = pd.DataFrame({
"customer_id": [1, 2, 3, 1, 2],
"product": ["A", "B", "A", "C", "A"],
"amount": [100, 200, 150, 300, 250],
"metadata": [
{'category': 'electronics', 'priority': 'high'},
{'category': 'books', 'priority': 'low'},
{'category': 'electronics', 'priority': 'medium'},
{'category': 'clothing', 'priority': 'high'},
{'category': 'books', 'priority': 'low'}
]
})
# Direct DataFrame querying with JSON support
result = chdb.query("""
SELECT
customer_id,
sum(amount) as total_spent,
toString(metadata.category) as category
FROM Python(df)
WHERE toString(metadata.priority) = 'high'
GROUP BY customer_id, toString(metadata.category)
ORDER BY total_spent DESC
""").show()
# Query Arrow Table
arrow_table = pa.table({
"id": [1, 2, 3, 4],
"name": ["Alice", "Bob", "Charlie", "David"],
"score": [98, 89, 86, 95]
})
chdb.query("""
SELECT name, score
FROM Python(arrow_table)
ORDER BY score DESC
""").show()
Stateful sessions
Sessions maintain query state across multiple operations, enabling complex workflows:
from chdb import session
# Temporary session (auto-cleanup)
sess = session.Session()
# Or persistent session with specific path
# sess = session.Session("/path/to/data")
# Create database and tables
sess.query("CREATE DATABASE IF NOT EXISTS analytics ENGINE = Atomic")
sess.query("USE analytics")
sess.query("""
CREATE TABLE sales (
id UInt64,
product String,
amount Decimal(10,2),
sale_date Date
) ENGINE = MergeTree()
ORDER BY (sale_date, id)
""")
# Insert data
sess.query("""
INSERT INTO sales VALUES
(1, 'Laptop', 999.99, '2024-01-15'),
(2, 'Mouse', 29.99, '2024-01-16'),
(3, 'Keyboard', 79.99, '2024-01-17')
""")
# Create materialized views
sess.query("""
CREATE MATERIALIZED VIEW daily_sales AS
SELECT
sale_date,
count() as orders,
sum(amount) as revenue
FROM sales
GROUP BY sale_date
""")
# Query the view
result = sess.query("SELECT * FROM daily_sales ORDER BY sale_date", "Pretty")
print(result)
# Session automatically manages resources
sess.close() # Optional - auto-closed when object is deleted
Advanced session features
# Session with custom settings
sess = session.Session(
path="/tmp/analytics_db",
)
# Query performance optimization
result = sess.query("""
SELECT product, sum(amount) as total
FROM sales
GROUP BY product
ORDER BY total DESC
SETTINGS max_threads = 4
""", "JSON")
See also: test_stateful.py.
Python DB-API 2.0 interface
Standard database interface for compatibility with existing Python applications:
import chdb.dbapi as dbapi
# Check driver information
print(f"chDB driver version: {dbapi.get_client_info()}")
# Create connection
conn = dbapi.connect()
cursor = conn.cursor()
# Execute queries with parameters
cursor.execute("""
SELECT number, number * ? as doubled
FROM system.numbers
LIMIT ?
""", (2, 5))
# Get metadata
print("Column descriptions:", cursor.description)
print("Row count:", cursor.rowcount)
# Fetch results
print("First row:", cursor.fetchone())
print("Next 2 rows:", cursor.fetchmany(2))
# Fetch remaining rows
for row in cursor.fetchall():
print("Row:", row)
# Batch operations
data = [(1, 'Alice'), (2, 'Bob'), (3, 'Charlie')]
cursor.execute("""
CREATE TABLE temp_users (
id UInt64,
name String
) ENGINE = MergeTree()
ORDER BY (id)
""")
cursor.executemany(
"INSERT INTO temp_users (id, name) VALUES (?, ?)",
data
)
User defined functions (UDF)
Extend SQL with custom Python functions:
Basic UDF usage
from chdb.udf import chdb_udf
from chdb import query
# Simple mathematical function
@chdb_udf()
def add_numbers(a, b):
return int(a) + int(b)
# String processing function
@chdb_udf()
def reverse_string(text):
return text[::-1]
# JSON processing function
@chdb_udf()
def extract_json_field(json_str, field):
import json
try:
data = json.loads(json_str)
return str(data.get(field, ''))
except:
return ''
# Use UDFs in queries
result = query("""
SELECT
add_numbers('10', '20') as sum_result,
reverse_string('hello') as reversed,
extract_json_field('{"name": "John", "age": 30}', 'name') as name
""")
print(result)
Advanced UDF with custom return types
# UDF with specific return type
@chdb_udf(return_type="Float64")
def calculate_bmi(height_str, weight_str):
height = float(height_str) / 100 # Convert cm to meters
weight = float(weight_str)
return weight / (height * height)
# UDF for data validation
@chdb_udf(return_type="UInt8")
def is_valid_email(email):
import re
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return 1 if re.match(pattern, email) else 0
# Use in complex queries
result = query("""
SELECT
name,
calculate_bmi(height, weight) as bmi,
is_valid_email(email) as has_valid_email
FROM (
SELECT
'John' as name, '180' as height, '75' as weight, '[email protected]' as email
UNION ALL
SELECT
'Jane' as name, '165' as height, '60' as weight, 'invalid-email' as email
)
""", "Pretty")
print(result)
UDF best practices
- Stateless Functions: UDFs should be pure functions without side effects
- Import Inside Functions: All required modules must be imported within the UDF
- String Input/Output: All UDF parameters are strings (TabSeparated format)
- Error Handling: Include try-catch blocks for robust UDFs
- Performance: UDFs are called for each row, so optimize for performance
# Well-structured UDF with error handling
@chdb_udf(return_type="String")
def safe_json_extract(json_str, path):
import json
try:
data = json.loads(json_str)
keys = path.split('.')
result = data
for key in keys:
if isinstance(result, dict) and key in result:
result = result[key]
else:
return 'null'
return str(result)
except Exception as e:
return f'error: {str(e)}'
# Use with complex nested JSON
query("""
SELECT safe_json_extract(
'{"user": {"profile": {"name": "Alice", "age": 25}}}',
'user.profile.name'
) as extracted_name
""")
Streaming query processing
Process large datasets with constant memory usage:
from chdb import session
sess = session.Session()
# Setup large dataset
sess.query("""
CREATE TABLE large_data ENGINE = Memory() AS
SELECT number as id, toString(number) as data
FROM numbers(1000000)
""")
# Example 1: Basic streaming with context manager
total_rows = 0
with sess.send_query("SELECT * FROM large_data", "CSV") as stream:
for chunk in stream:
chunk_rows = len(chunk.data().split('\n')) - 1
total_rows += chunk_rows
print(f"Processed chunk: {chunk_rows} rows")
# Early termination if needed
if total_rows > 100000:
break
print(f"Total rows processed: {total_rows}")
# Example 2: Manual iteration with explicit cleanup
stream = sess.send_query("SELECT * FROM large_data WHERE id % 100 = 0", "JSONEachRow")
processed_count = 0
while True:
chunk = stream.fetch()
if chunk is None:
break
# Process chunk data
lines = chunk.data().strip().split('\n')
for line in lines:
if line: # Skip empty lines
processed_count += 1
print(f"Processed {processed_count} records so far...")
stream.close() # Important: explicit cleanup
# Example 3: Arrow integration for external libraries
import pyarrow as pa
from deltalake import write_deltalake
# Stream results in Arrow format
stream = sess.send_query("SELECT * FROM large_data LIMIT 100000", "Arrow")
# Create RecordBatchReader with custom batch size
batch_reader = stream.record_batch(rows_per_batch=10000)
# Export to Delta Lake
write_deltalake(
table_or_uri="./my_delta_table",
data=batch_reader,
mode="overwrite"
)
stream.close()
sess.close()
Python table engine
Query Pandas DataFrames
import chdb
import pandas as pd
# Complex DataFrame with nested data
df = pd.DataFrame({
"customer_id": [1, 2, 3, 4, 5, 6],
"customer_name": ["Alice", "Bob", "Charlie", "Alice", "Bob", "David"],
"orders": [
{"order_id": 101, "amount": 250.50, "items": ["laptop", "mouse"]},
{"order_id": 102, "amount": 89.99, "items": ["book"]},
{"order_id": 103, "amount": 1299.99, "items": ["phone", "case", "charger"]},
{"order_id": 104, "amount": 45.50, "items": ["pen", "paper"]},
{"order_id": 105, "amount": 199.99, "items": ["headphones"]},
{"order_id": 106, "amount": 15.99, "items": ["cable"]}
]
})
# Advanced querying with JSON operations
result = chdb.query("""
SELECT
customer_name,
count() as order_count,
sum(toFloat64(orders.amount)) as total_spent,
arrayStringConcat(
arrayDistinct(
arrayFlatten(
groupArray(orders.items)
)
),
', '
) as all_items
FROM Python(df)
GROUP BY customer_name
HAVING total_spent > 100
ORDER BY total_spent DESC
""").show()
# Window functions on DataFrames
window_result = chdb.query("""
SELECT
customer_name,
toFloat64(orders.amount) as amount,
sum(toFloat64(orders.amount)) OVER (
PARTITION BY customer_name
ORDER BY toInt32(orders.order_id)
) as running_total
FROM Python(df)
ORDER BY customer_name, toInt32(orders.order_id)
""", "Pretty")
print(window_result)
Custom data sources with PyReader
Implement custom data readers for specialized data sources:
import chdb
from typing import List, Tuple, Any
import json
class DatabaseReader(chdb.PyReader):
"""Custom reader for database-like data sources"""
def __init__(self, connection_string: str):
# Simulate database connection
self.data = self._load_data(connection_string)
self.cursor = 0
self.batch_size = 1000
super().__init__(self.data)
def _load_data(self, conn_str):
# Simulate loading from database
return {
"id": list(range(1, 10001)),
"name": [f"user_{i}" for i in range(1, 10001)],
"score": [i * 10 + (i % 7) for i in range(1, 10001)],
"metadata": [
json.dumps({"level": i % 5, "active": i % 3 == 0})
for i in range(1, 10001)
]
}
def get_schema(self) -> List[Tuple[str, str]]:
"""Define table schema with explicit types"""
return [
("id", "UInt64"),
("name", "String"),
("score", "Int64"),
("metadata", "String") # JSON stored as string
]
def read(self, col_names: List[str], count: int) -> List[List[Any]]:
"""Read data in batches"""
if self.cursor >= len(self.data["id"]):
return [] # No more data
end_pos = min(self.cursor + min(count, self.batch_size), len(self.data["id"]))
# Return data for requested columns
result = []
for col in col_names:
if col in self.data:
result.append(self.data[col][self.cursor:end_pos])
else:
# Handle missing columns
result.append([None] * (end_pos - self.cursor))
self.cursor = end_pos
return result
### JSON Type Inference and Handling \{#json-type-inference-handling}
chDB automatically handles complex nested data structures:
```python
import pandas as pd
import chdb
# DataFrame with mixed JSON objects
df_with_json = pd.DataFrame({
"user_id": [1, 2, 3, 4],
"profile": [
{"name": "Alice", "age": 25, "preferences": ["music", "travel"]},
{"name": "Bob", "age": 30, "location": {"city": "NYC", "country": "US"}},
{"name": "Charlie", "skills": ["python", "sql", "ml"], "experience": 5},
{"score": 95, "rank": "gold", "achievements": [{"title": "Expert", "date": "2024-01-01"}]}
]
})
# Control JSON inference with settings
result = chdb.query("""
SELECT
user_id,
profile.name as name,
profile.age as age,
length(profile.preferences) as pref_count,
profile.location.city as city
FROM Python(df_with_json)
SETTINGS pandas_analyze_sample = 1000 -- Analyze all rows for JSON detection
""", "Pretty")
print(result)
# Advanced JSON operations
complex_json = chdb.query("""
SELECT
user_id,
JSONLength(toString(profile)) as json_fields,
JSONType(toString(profile), 'preferences') as pref_type,
if(
JSONHas(toString(profile), 'achievements'),
JSONExtractString(toString(profile), 'achievements[0].title'),
'None'
) as first_achievement
FROM Python(df_with_json)
""", "JSONEachRow")
print(complex_json)
Performance and optimization
Benchmarks
chDB consistently outperforms other embedded engines:
- DataFrame operations: 2-5x faster than traditional DataFrame libraries for analytical queries
- Parquet processing: Competitive with leading columnar engines
- Memory efficiency: Lower memory footprint than alternatives
Performance tips
import chdb
# 1. Use appropriate output formats
df_result = chdb.query("SELECT * FROM large_table", "DataFrame") # For analysis
arrow_result = chdb.query("SELECT * FROM large_table", "Arrow") # For interop
native_result = chdb.query("SELECT * FROM large_table", "Native") # For chDB-to-chDB
# 2. Optimize queries with settings
fast_result = chdb.query("""
SELECT customer_id, sum(amount)
FROM sales
GROUP BY customer_id
SETTINGS
max_threads = 8,
max_memory_usage = '4G',
use_uncompressed_cache = 1
""", "DataFrame")
# 3. Leverage streaming for large datasets
from chdb import session
sess = session.Session()
# Setup large dataset
sess.query("""
CREATE TABLE large_sales ENGINE = Memory() AS
SELECT
number as sale_id,
number % 1000 as customer_id,
rand() % 1000 as amount
FROM numbers(10000000)
""")
# Stream processing with constant memory usage
total_amount = 0
processed_rows = 0
with sess.send_query("SELECT customer_id, sum(amount) as total FROM large_sales GROUP BY customer_id", "JSONEachRow") as stream:
for chunk in stream:
lines = chunk.data().strip().split('\n')
for line in lines:
if line: # Skip empty lines
import json
row = json.loads(line)
total_amount += row['total']
processed_rows += 1
print(f"Processed {processed_rows} customer records, running total: {total_amount}")
# Early termination for demo
if processed_rows > 1000:
break
print(f"Final result: {processed_rows} customers processed, total amount: {total_amount}")
# Stream to external systems (e.g., Delta Lake)
stream = sess.send_query("SELECT * FROM large_sales LIMIT 1000000", "Arrow")
batch_reader = stream.record_batch(rows_per_batch=50000)
# Process in batches
for batch in batch_reader:
print(f"Processing batch with {batch.num_rows} rows...")
# Transform or export each batch
# df_batch = batch.to_pandas()
# process_batch(df_batch)
stream.close()
sess.close()
GitHub repository
- Main Repository: chdb-io/chdb
- Issues and Support: Report issues on the GitHub repository